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I. Introduction 
The present study of cubane, (CH)8 (Figure 1), concludes 

a set of investigations on the three (CH)n molecules whose 
carbon skeletons form perfect solids, the others being tetra-
hedrane (n = 4)2a and dodecahedrane (n = 20).2b Of the three, 
cubane is especially interesting to chemists since it has already 
been synthesized20 and its On point-group symmetry con-
firmed.2d However, despite these facts cubane has received 
surprisingly little theoretical consideration.3 This paper fur
nishes molecular orbital calculations at the ab initio STO-3G,4 

SCF-Xa,5'6 MINDO/3,7 and INDO8 levels of approximation 
and applies the SCF-Xa method in Slater's transition state 
approximation to the calculation of the cubane valence-shell 
vertical ionization energies. The latter may be compared with 
the photoelectron spectrum,9 as yet incomplete. 

An important consequence of the high cubane point-group 
symmetry is the fact that several of the molecular orbitals are 
symmetry determined in a minimal basis set treatment. This 
invites a novel analysis of the molecular orbital splitting pattern 
in terms of interactions between localized CC and CH orbitals 
(LMO's), of the Edmiston-Ruedenberg10 type, for example, 
which offers some interesting insights into cubane in particular 
and hydrocarbons generally. 

II. Molecular Orbital Descriptions 
A. General Aspects. The present molecular orbital studies 

utilize a minimal basis of atomic orbitals (AOs), i.e., C Is, 2s, 
and 2p and H Is orbitals. The MINDO/3 and INDO methods 
ignore the C Is cores, as we shall do in the present discussion. 
The three 2p orbitals of each carbon can be chosen to be 2pr 
pointing radially outward from the molecular midpoint and 
a pair of 2pt tangential orbitals perpendicular to 2pr. This 
simplifies the reduction into irreducible representations of the 

(13) R. J. Buenker, S. D. Peyerimhoff, and W. E. Kammer, J. Chem. Phys., 55, 
814(1971). 

(14) T. Dunning, J. Chem. Phys., 53, 2823 (1970). 
(15) S. D. Peyerimhoff, R. J. Buenker, and L. C. Allen, J. Chem. Phys., 45, 734 

(1966). 
(16) W. J. Hehre, R. F. Stewart, and J. A. Pople, J. Chem. Phys., 51, 2657 

(1969). 
(17) R. J. Buenker, S. D, Peyerimhoff, and H. L. Hsu, Chem. Phys. Lett., 11,65 

(1971). 
(18) E. Miron, B. Raz, and J. Jortner, Chem. Phys. Lett., 6, 563 (1970). 
(19) M. Krauss and S. R. Mlelczarek, J. Chem. Phys., 51, 5243 (1969). 
(20) C. F. Bender, T. H. Dunning, Jr., H. F. Schaefer, III, W. A. Goddard, III, and 

W. J. Hunt, Chem. Phys. Lett., 15, 171 (1972). 
(21) R. J. Buenker and S. D. Peyerimhoff, Chem. Phys., 9, 75 (1975). 
(22) L. E. McMurchie and E. R. Davidson, J. Chem. Phys., 66, 2959 (1977). 

full atomic orbital reducible representation. Each of the three 
sets of eight radial functions (C2s, C2pr, and His) leads to aig, 
t2g> tiu, and a2u symmetry adapted linear combinations; the 16 
AO tangential set furnishes eg, tig, t2g, eu, tiu, and t2u symmetry 
orbitals. Thus, in toto, the full valence AO basis contains in 
type (and number) aig(3), a2u(3), eg(l), eu(l), tig(l), t2g(4), 
tiu(4), and t2u(l) symmetry orbitals. 

The ground-state molecular orbital configuration is easily 
determined by projecting the 12 CC bent c bonds onto the ir
reducible representations of Oh, to give aig(l), eg(l), t2g(l), 
tiu(l), and t2u(l) orbitals; projecting out the eight linear 
combinations of CH a bonds gives a i g(l), t2g(l), t]U(l), and 
^2u(l) orbitals. Two important points follow. (1) The eg and 
t2u orbitals that occur only once in the occupied set are sym
metry-determined combinations of CC LMOs with no CH 
admixture (they are also symmetry-determined combinations 
of 2pt orbitals with no C2s admixture). (2) The a2u orbital is 
derived from a linear combination of CH LMOs with no CC 
LMO contribution. Thus, cubane represents the unusual sit
uation where a saturated hydrocarbon has a molecular orbital 
which is solely CC bonding and another which is solely CH 
bonding. (By contrast, tetrahedrane and dodecahedrane have 
symmetry-determined molecular orbitals which are linear 
combinations of CC LMOs alone, but no orbitals formed ex
clusively from CH LMOs). 

B. SCF-Xa Calculations. Before citing the results, it is 
necessary to give some particulars of the SCF-Xa calculations 
performed here since the parameters of the method have not 
been standardized. For a general description of the method, 
its philosophy, and applications, the reader is referred to the 
papers of Slater5 and Johnson.6 The quantities specific to the 
present calculations are (1) the ratio of C to H atomic sphere 
radii, rc/rn, (2) the percent overlap between atomic spheres, 
(3) the exchange-term prefactors, ac and a\\ for the atomic, 
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Table I. Valence Orbital Energies of Cubane Calculated by 
Several Methods" 
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Figure 1. The cubane molecule including the atomic numbering system 
used here. 

interatomic, and outer-sphere regions, and (4) the angular 
momentum / values to be used in the inner- and outer-sphere 
regions. 

For the atomic spheres we employed the criterion of Nor
man1' that each hydrogen and carbon sphere contain one and 
six electrons, respectively, when the atomic charge densities 
were superposed, giving rc/rH = 1.426. The extent of sphere 
overlap was determined by Norman's condition1' that the virial 
theorem be satisfied, which furnished rc = 1.74 A (and rH = 
1.22 A). Overlap of the carbon spheres was 19- of the CC 
bond length and the carbon-hydrogen sphere overlap was 
somewhat greater. The outer sphere was made tangent to the 
hydrogen spheres. Values of ac = 0.759 28 and aH = 0.777 25 
were taken from the work of Schwarz12 and Rosch et al.,13 

while for the intersphere and outer-sphere regions a weighted 
average, a = 0.761 85, was employed. Finally, as to the choice 
of angular momentum values, partial waves through / = 1 (p 
orbitals) were used in the carbon and hydrogen spheres and 
values through / = 4 were used in the outer-sphere region. A 
test of d waves (/ = 2) showed their effect on the orbital ener
gies to be negligible. 

C. Molecular Orbital Energies. The orbital energies, e\, 
obtained from the STO-3G, SCF-Xa, MINDO/3, and INDO 
calculations are given in Table I. The STO-3G and SCF-Xa 
ordering of the orbital energies was the same: e laig < e l t lu < 
eu2g < e2aig < eia2u <

 e2t,u < «ieg < eU2u < e2l2g, although the 
SCF-Xa values are ca. 0.2-0.3 eV higher (owing to the par
ticular choice of numerical atomic orbitals). The MINDO/3 
method led to the same ordering except for a transposition of 
the proximate leg and 2t[u orbital energies. On the other hand, 
the INDO ordering differs significantly from the above be
cause of an unusually stable leg level. The localized orbital 
analysis of section III reveals the source of this extra stability, 
and demonstrates that it is anomalous. Thus, aside from a 
possible transposition of 2t[U and leg orbitals the ordering of 
the cubane molecular energy levels is established. 

D. Ionization Energies. The vertical ionization potentials 
(IPs) of cubane can be obtained from the ab initio orbital 
energies by a variant of Koopmans' theorem. By fitting our 
previous STO-3G eigenvalues of benzene to the observed IPs 
we obtain the least-squares equation14 

IP = -20.75eSTO-3G + 3.1OeV (D 
with a standard deviation over the range of ca. 20 eV of only 
0.21 eV. Applying this equation to the calculated STO-3G 
cubane eigenvalues gives the predicted IPs shown in Table II. 
An alternate procedure for the IPs is the SCF-Xa "transi
tion-state" method of Slater.5-13 Here, a separate self-consis-
tent-field calculation is performed for each ionized state—2T2g, 
2T2U, etc., with the occupation number of the ionized orbital 
diminished by half an electron. The calculated ionization en
ergy then closely approximates the difference between the total 

Orbital 

laig 
ltlu 
lt2g 
2alg 

la2u 
2tiu 
Ie8 

It2U 
2t2g 

STO-3G 

1.219 
0.947 
0.739 
0.693 
0.617 
0.555 
0.548 
0.350 
0.344 

Negative orbital energy, au 

SCF-Xa 

0.835 
0.646 
0.522 
0.505 
0.443 
0.378 
0.361 
0.211 
0.188 

MINDO/3 

1.709 
1.055 
0.735 
0.641 
0.584 
0.487 
0.528 
0.349 
0.338 

INDO 

2.489 
1.467 
0.990 
1.076 
0.769 
0.728 
0.952 
0.494 
0.393 

"Bond lengths of RQC = 1.55 A, 7?CH = 1.06 A were employed 
except in the MINDO/3 calculation where the geometry was opti
mized to Rcc = 1.568 A, i?cH = 1 • 106 A. 

Table II. Ionization Energies of Cubane (eV)" 

Symmetry of 
ionized state 

2T28 2T2u 
2Eg 
2T? 

1 Iu 2A2U 
2A18 
2T28 
2T1U 
2A18 

STO-3G 
eq 1 

10.2 
10.4 
14.5 
14.6 
15.9 
17.5 
18.4 
22.8 
28.4 

SCF-Xa transition-
state method 

10.2 
10.8 
14.9 
15.4 
16.5 
18.5 
19.9 
22.7 
28.0 

"Reference 9 gives observed ionization energies (eV) at 8.74, 13.62, 
15.34, 16.87, and 17.26. 

energy of the ion, obtained from its own self-consistent-field 
("relaxed") orbitals, and the ground state. The transition state 
ionization energies are also given in Table II. They have been 
adjusted so as to bring them into agreement with the STO-3G 
ionization potentials obtained from eq 3. In the transition-state 
SCF-xa method the spacings between levels are often produced 
better than their absolute values. 

It should be noted that both the ab initio and transition-state 
calculations assume Oh symmetry, thus ignoring the nuclear 
distortions which would remove the degeneracies of the ion 
energies. For example, it is probable that a D^ symmetry 
would arise from first-order Jahn-Teller distortion of the 2Eg 
state along an Eg vibrational mode. Distortions of the 2Tiu, 
2T2u, and 2T2g ions should lead to D^ and D^ symmetries via 
Eg and T2g vibrations, respectively. The magnitude of the 
Jahn-Teller splittings, which are ignored in the present 
treatment, are probably quite small since cubane is a rigid 
polycyclic hydrocarbon. Indeed, the splittings observed in the 
2T states of methane and neopentane are 0.715 and 0.5 eV,16 

respectively, so that splittings of ca. 0.2 eV can be anticipated 
for cubane. 

Although actual band assignments must await the full 
photoelectron spectrum, it is already clear that the calculated 
ab initio and transition-state ionization potentials, which are 
themselves in good agreement, are quite similar to the values 
reported in the low-resolution He(I) spectrum, given in Table 
II.9 In particular, the calculations predict a very large gap of 
ca. 4 eV between the T2g-T2u and Eg-Tiu pairs at 9 and 13 eV. 
In fact, a gap of 4.9 eV does appear in just this region of the 
spectrum. Cubane is a rather unusual hydrocarbon in having 
such a band-free region in its PE spectrum. The gap is most 
likely a consequence of the unique nature of the eg and t2u or
bitals which bracket it, and are purely symmetry-determined 
combinations of carbon 2pt orbitals. 
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Figure Z. The above are depictions of the symmetry-adapted linear com
binations of CC localized orbitals. Filled lines indicate bonds whose con
tribution to the symmetry function is +1, while unfilled bonds indicate 
contributions of — 1 (excepting egb where the contribution is —2). Dashed 
bonds do not enter the linear combination of that particular symmetry 
species. 

An interesting question is whether the proximate T2g and 
T2u ionizations, and similarly the Eg and Tju ionizations, can 
be resolved since their calculated energy differences are close 
to the magnitudes of the Jahn-Teller T-band splittings. A 
useful experimental approach to this problem would be to 
obtain the ionization spectrum using He(I) and He(II) or x-ray 
sources. The latter give relatively high intensities to bands 
associated with ionizations from orbitals having high s char
acter, while the former leads to intense lines from orbitals 
having high p character. Thus, the relative intensities of T2g 
vs. T2u and Eg vs. Tiu bands should vary significantly with the 
nature of the source. 

III. Localized Orbital Analysis 

As has been previously stated, the high point-group sym
metry of cubane suggests an interpretation of its orbital energy 
splitting pattern in terms of symmetry-adapted linear combi
nations of bond LMOs localized mainly on two centers. In 
principle, the analysis could utilize either orthogonal LMOs 
as in the present case (such LMOs are readily obtained com
putationally by an orthogonal transformation of the canonical 
molecular orbitals10) or nonorthogonal LMOs (e.g., entirely 
two-center localized).17 

The 12 symmetry-adapted orbitals obtained by projection 
of the CC LMOs—aig, ti„, eg, t2g and t2u—are depicted in 
Figure 2. A bond which makes a positive contribution to the 
symmetry combination is indicated by a filled solid line, a bond 
which makes a negative contribution by an unfilled line, and 

/ / / 
/ / / 

•* -/ / / 
/ / 

Figure 3. The ega symmetry orbital of Figure 2 depicted in terms of sp3 

hybrids on each carbon, and equivalently in terms of unhybridized p or
bitals on each carbon. 

a bond which does not contribute to the symmetry-adapted 
function is dashed. All the magnitudes in the symmetry-
adapted functions are unity, except for the negative bonds of 
the egb orbital which have magnitudes of two. (It might be sgb 

noted that the ega and e gb orbitals transform like d^ -^ and 
&izi-xi-yr orbitals in Oh symmetry). The symmetry orbitals 
of Figure 2 are mutually orthogonal. 

In terms of the carbon numbering of Figure 1 the LMO 
between bonded carbons i and j is denoted by, and, for ex
ample, the normalized algebraic expressions for ega and egb 
associated with the pictorial representations of Figure 2 are 
ega = 8_ 1 / 2(bi8 - bi4 + b4 5 - b5 8 + b2 7 - b2 3 + b3 6 - b67) 

egb = 24- 1 / 2 (bi 8 + b2 3 + b45 + bi4 
+ bsg + b67 + b27 + b36 — 2bi2 - 2b56 - 2b34 - 2b7s) 

The diagrams of Figure 2 are further elaborated on in Figure 
3 where the ega orbital is depicted in terms of linear combina
tions of AO hybrids (ca. sp3-2 in an INDO calculation)18 or 
equivalently pure p orbitals. That only p orbitals are sufficient 
follows immediately from Figure 3 where it can be seen that 
each carbon contains two equivalent hybrids of opposite sign 
so that each carbon makes a net zero 2s contribution. A similar 
situation prevails with the t2u orbitals which differ from the 
ega orbital by a rotation of the back face relative to the first, 
followed by rotation of the entire molecule so as to give either 
the a, b, or c partner of Figure 2. 

Consider now the matrix elements of the Fock operator, F, 
in the symmetry-adapted CC basis. Since the operator is totally 
symmetric in Oh, its matrix is fully blocked into one-dimen
sional matrices, the elements of which may be viewed as the 
Hartree-Fock energies e(CC) of the alg, tiu, t2g, eg, and t2u CC 
symmetry orbitals. These energies can, in turn, be expressed 
in terms of the four unique Fock interaction matrix elements 
between various CC LMOs, i.e., the 0, y, 8, and e matrix ele
ments of Figure 4, in addition to the diagonal CC matrix ele
ment a. (Note that we are using the same symbol, /3, y, etc., 
to denote the interacting pair of Figure 4 and its matrix element 
(bi2|F|b23).) Another way to say this is that we can obtain the 
Fock matrix elements over atomic orbitals, transform them 
to matrix elements over canonical molecular orbitals, trans
form again to matrix elements over LMOs, a, (j,..., and finally 
transform to matrix elements over symmetry-adapted LMOs. 
While this seems rather involved, it is certainly conceptually 
clear that what we seek is the splitting pattern of the CC 
symmetry-adapted orbital energies. 

In terms of the matrix elements a, /3, . . . , which are all 
negative, these energies are 

(2a) 

(2b) 

(2c) 

(2d) 

C81-(CC) = a + 40 + 27 + 45 + e 

Ct111(CC) = a + 20 - 28 - e 

C28(CC) = a - 2 7 + e 

eeg(CC) = a - 2/3 + 2y - 25 + e 

et2u(CC) = a - 2/3 + 25 - e (2e) 
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Figure 4. Interactions between CC and CH localized orbitals of cubane. 
These lead to corresponding matrix elements in the Hartree-Fock operator 
bearing the same designations in the text. 
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Figure 5. Schematic diagrammatic representation of the cubane orbital 
energies. On the left, 12 degenerate CC LMOs interact to form five CC 
energy levels of aig, tiu, eg, t2g, and t2U symmetries; on the right, eight 
degenerate CH LMOs interact to form four CH energy levels of aig, tiu, 
t2g, and a2u symmetry. In the center the cubane molecular orbital levels 
are shown. Six are formed from interactions between CC and CH orbitals 
of like symmetry (aig, tiu, and t2g); the eg(CC), t2u(CC) and a2u(CH) are 
symmetry determined. The location of the 12 CC LMO's relative to the 
8 CH LMO's is not known with certainty. 

In order to get some numerical estimate of these splittings 
we obtained a, /3, y, . . ., from the INDO calculation, its or
bitals being convenient to localize. The values calculated were 
(au) a = -0.96, /3 = -0.23, y = -0.23, 8 = -0.03, and t = 
—0.06. It can be seen that the diagonal CC LMO matrix ele
ment, a, is the most negative and that the algebraic increase 
in the interaction elements tends to correlate with decreasing 
LMO overlap. The only exception is the vicinal interaction 
energy, y, which is as negative as the geminal value, /3, even 
though the vicinal bonds are somewhat further apart. This il
lustrates an inadequacy of the INDO method. By observing 
that '/2(Ct211(CC) - <?eg(CC)) = - 7 + 25 - e * - 7 and re
calling that both the t2U and eg orbitals are symmetry deter
mined, we can obtain values of —y from the SCF orbital 

vtff 

'29c 

u 2 u 

Figure 6. Symmetry-adapted linear combinations of CH localized orbitals. 
Filled and unfilled lines indicate contributions of +1 and — 1, respective-

energies et2u
 a n ^ ^eg (which are identical with ct2u(CC) and 

ee (CC)). The values of V2(Ct211 - <?eg) found from the STO-3G, 
SCF-Xa, and MINDO/3 methods are 0.099,0.075, and 0.090 
au, respectively, whereas the INDO value is more than twice 
as large, 0.229 au. Thus, the INDO method produces too 
negative a 7, i.e., it overemphasize the x-like interactions be
tween front and back carbons in Figure 3. 

If we accept as approximate values of the parameters /3 = 
-0.2,7 = -0.15, 5 = -0.03, and« = -0.06, it is easily verified 
that the CC energies in order of increasing values are eaig(CC) 
< et,«(CC) < eeg(CC) < e,2g(CC) < et2u(CC). These are de
picted schematically on the left-hand side of the orbital in
teraction diagram, Figure 5, with the set of 12 "degenerate" 
CC LMO energes (at the center of gravity of this splitting 
pattern) further to the left, yet. 

We now turn to the corresponding splitting pattern for the 
eight CH LMOs. The latter, when projected onto the Oh ir
reducible representations, furnish species of symmetry aig, tiu, 
t2g, and a2u, once each. These are shown in Figure 6, where 
positive CH contributions to the symmetry combinations are 
indicated by filled lines and negative contributions by unfilled 
lines. In order to compute the CH Hartree-Fock energies we 
require the three unique Fock interaction matrix elements, /3', 
7', and S' of Figure 4, along with a', the diagonal CH matrix 
element. The splitting pattern is readily obtained as 

(3a) 

(3b) 

(3c) 

(3d) 

Numerical estimates obtained by localizing the INDO ca
nonical orbitals are (au) a' = -0.88, /3' = -0.05,7' = -0.01, 
and 5' = —0.002. Again there is found a correlation between 
the interaction matrix elements and the distance between the 
corresponding CH LMOs. In order of increasing energy we 

eaig(CH) = a' + 3/3' + 37' + 8' 

C1111(CH) = a' + /3' - 7' " 5' 

ct2g(CH) = a' - /3' - 7' + 8' 

ea2u(CH) = a'- 3/3' + 3 T ' - 8' 



Schulman et al. / Theoretical Studies of the Cubane Molecule 2953 

obtain eaig(CH) < etw(CH) < et2g(CH) < *aiu(CH). The 
splitting pattern is depicted on the right-hand side of Figure 
5 with the eight "degenerate" CH LMO energies (at the center 
of gravity) further to the right. 

It is interesting to compare the unprimed and primed in
teraction matrix elements. Thus, we see that a « a', the INDO 
"energy" of a CC orbital is approximately equal to that of a 
CH orbital. This result probably holds true for hydrocarbons 
in general, since, although cubane has a strained framework, 
the strain energy is distributed over 12 bonds. Comparison of 
the interaction matrix elements shows that the CH /3', which 
describes a vicinal interaction, is of the same order of magni
tude as 7 and 5, the two CC vicinal interactions. Note also that 
the vicinal interactions depend on dihedral angle since this 
geometrical parameter largely determines the distance between 
centroids. 

Since there are no geminal CH interactions (which would 
require at least a CH2 unit) the range of the CH splittings is 
somewhat smaller than the CC splittings. Moreover, it is easy 
to locate the least stable of the CH symmetry-orbital energies, 
ea2u(CH), since this orbital is symmetry determined. Actually, 
the determination by symmetry here is a somewhat weaker 
condition than for the t2U and eg orbitals since in a minimal 
basis there is only one orbital of each of the latter symmetries 
in both the occupied and virtual molecular orbital set. While 
there is only one occupied CH orbital which is ascribed to the 
symmetry-adapted combination of CH bonds, there are three 
unoccupied &2u orbitals (also originating from the C 2s, C 2pr, 
and H Is basis functions) and the detailed form of the occupied 
a2u orbital can only be determined after the SCF calculation 
has been made. 

In order to complete the cubane molecular orbital energy 
scheme and obtain an accounting for the origin of the molec
ular orbitals, the three CC-CH interaction energies /3", 7", 
and 5" of Figure 4 are required. In terms of them the Fock 
interaction elements between CC and CH symmetry-adapted 
functions of the same symmetry are 

K(aig) = 6+1/2(/3" + 27" + 5") (4a) 

K(tlu) = 2(/3" - b") (4b) 

V(hg) = 2+'/2(/3" - 27" + 5") (4c) 

The 2X2 matrixes for these three symmetries are now known. 
They can be diagonalized to obtain the Hartree-Fock orbital 
energies or their solutions can be approximated by the per
turbation-theory expression for the splitting (symmetric about 
the average). INDO calculations yield (au) /3" = —0.13, 7" 
= -0.04, and 5" = -0.02. The largest splitting is ob
tained for the tiu case, with smaller splittings for aig and t2g. 
The split levels and the dashed connecting lines to the inter
acting CH and CC levels are depicted in the center of Figure 
5. 

The following characterizations of the cubane molecular 
orbitals can now be made. The laig orbital is predominantly 
CC bonding and 2a]g is mostly CH. The lti„ and 2t2g orbitals 
are mixtures of CC and CH bonds, with the former predomi
nating, while the 2ti„ and lt2g are mixtures with more CH than 
CC. Finally, the eg and t2u orbitals are CC by symmetry, and 
the a2u orbital is CH. Such a detailed characterization does not 
appear to have been made for other molecules. 

In view of this fact it is worth considering how cubane would 
be described by an empirical method. The higher ionization 
potentials of hydrocarbons have been described by a Hiickel 
(one-electron, nearest-neighbor) treatment employing a C 2s 
orbital basis with an empirical a = 21.3 eV (for a methine 
carbon) and a 2s-2s interaction energy, /3 = 1.85 eV.19 The 
mixing of the eight cubane C 2s functions in this description 
leads to eight symmetry-adapted linear combinations—aig, 

tiu, t2g, and a2u—which should correspond approximately to 
the observed photoionization energies for these symmetries. 
The results of such a calculation can be readily found from the 
isomorphic CH splitting pattern, eq 3a-d, by dropping the 
primes and setting 7 and 5 to zero. We obtain equally spaced 
levels of separation 2/3 or 3.7 eV. This prediction conforms to 
some extent with the calculated photoionization energies of 
the SCF-Xa transition-state calculation which furnishes 
spacings of 3.4 eV for A2u-T2g, 2.8 eV for T2g-Tiu, and 5.3 eV 
for Tiu-Aig. 

Presumably the difference between the two models involves 
inclusion of the 2s-2s matrix elements 7 and 520 since the 
Hiickel spacing would then go, in the order cited above as 2/3 
— 47 + 25: 2/3 — 25: 2/3 + 47 + 25, which are more in accord 
with the transition state method spacings. The first treatment 
presented in this paper, however, seems more appealing in that 
it is a model involving interacting bonds. In fact, it might be 
possible to use it for hydrocarbons generally for a simple pre
diction of the splitting pattern via the various unprimed, 
primed, and double-primed (i.e., CC-CC, CH-CH, and 
CC-CH) matrix elements in a one-electron treatment (as
suming transferability). This will be the subject of future in
vestigations. 
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